New probabilistic public-key encryption based on the RSA cryptosystem
نویسنده
چکیده
We propose a novel probabilistic public-key encryption, based on the RSA cryptosystem. We prove that in contrast to the (standardmodel) RSA cryptosystem each user can choose his own encryption exponent from a more extensive set of positive integers than it can be done by the creator of the concrete RSA cryptosystem who chooses and distributes encryption keys among all users. Moreover, we show that the proposed encryption remains secure even in the case when the adversary knows the factors of the modulus n = pq, where p and q are distinct primes. So, the security assumptions are stronger for the proposed encryption than for the RSA cryptosystem. More exactly, the adversary can break the proposed scheme if he can solve the general prime factorization problem for positive integers, in particular for the modulus n = pq and the Euler functionφ(n) = (p − 1)(q − 1). In fact, theproposed encryptiondoesnot use any extra tools or functions compared to the RSA cryptosystem.
منابع مشابه
QTRU: quaternionic version of the NTRU public-key cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...
متن کاملPublic-Key Cryptosystems Based on Composite Degree Residuosity Classes
This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to public-key cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes: a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA. Our cryptosystems, based on usual modular...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملA Complete Public-Key Cryptosystem
We present a cryptosystem which is complete for the class of probabilistic public-key cryptosystems with bounded error. Besides traditional encryption schemes such as RSA and El Gamal, this class contains probabilistic encryption of Goldwasser-Micali as well as Ajtai-Dwork and NTRU cryptosystems. The latter two are known to make errors with some small positive probability. To our best knowledge...
متن کاملPerformance Analysis of Goldwasser-Micali Cryptosystem
Probabilistic encryption is the use of randomness in an encryption algorithm, so that when encrypting the same message several times it will, in general, yield different ciphertexts. To be semantically secure, that is, to hide even partial information about the plaintext, an encryption algorithm must be probabilistic. The Goldwasser–Micali cryptosystem is an asymmetric key encryption algorithm ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Groups Complexity Cryptology
دوره 7 شماره
صفحات -
تاریخ انتشار 2015